If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+n^2+6n=0
a = 1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·1·5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*1}=\frac{-10}{2} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*1}=\frac{-2}{2} =-1 $
| 7x-4x^2=15 | | 16p^2/(40900-8p^2)=1 | | 2x2-8x+35=0 | | 3x2–8x–3=0 | | 9/(x+3)=5 | | 2z/9+6=1 | | -3/2x+1/3=1 | | 4/13n=-1/6 | | 6-x=2x-24 | | 4/(x-5)=5 | | 18-x2+3x=0 | | 9/(x-8)=4 | | 7x-30=6x-10 | | 2+10x5=52 | | 0.75+2(x-0.5)=3x-04 | | (X+9)+4=(9+x)+4 | | 2/3x+1=5/3 | | 3x-5/4=8 | | 16=6.5n-33(2n-5) | | 7/(x+8)=4 | | z/7+9=6 | | 9/(x+8)=6 | | 7/(x-4)=3 | | 2/3x+1=5/6 | | 9x-4(8-3)=72 | | X+5=x+30 | | b^2+7b+452=0 | | 15n-n^2=60 | | 10/(x-2)=6 | | 2(2w-6)=-2(w+3) | | -4/7y=8 | | 4(2x+3)=18+6x |